Cambridge IGCSE ${ }^{\text {TM }}$

CANDIDATE NAME
CENTER NUMBER

CANDIDATE NUMBER				

MATHEMATICS (US)

0444/43
Paper 4 (Extended)
October/November 2020
2 hours 30 minutes
You must answer on the question paper.
You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, center number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You may use tracing paper.
- You must show all necessary work clearly.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- For π, use either your calculator value or 3.142.

INFORMATION

- The total mark for this paper is 130 .
- The number of marks for each question or part question is shown in parentheses [].

Formula List

For the equation

$$
a x^{2}+b x+c=0
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Lateral surface area, A, of cylinder of radius r, height h.
Lateral surface area, A, of cone of radius r, sloping edge l.

Surface area, A, of sphere of radius r.

Volume, V, of pyramid, base area A, height h.

Volume, V, of cone of radius r, height h.

Volume, V, of sphere of radius r.

$A=2 \pi r h$
$A=\pi r l$
$A=4 \pi r^{2}$
$V=\frac{1}{3} A h$
$V=\frac{1}{3} \pi r^{2} h$
$V=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& \text { Area }=\frac{1}{2} b c \sin A
\end{aligned}
$$

(a) On the grid, draw the image of
(i) triangle A after a rotation of 90° counter-clockwise about $(0,0)$,
(ii) triangle A after a translation by the vector $\binom{3}{-5}$.
(b) Describe fully the single transformation that maps triangle A onto triangle B.
\qquad
\qquad

2 (a) The Earth has a surface area of approximately $510100000 \mathrm{~km}^{2}$.
(i) Write this surface area in scientific notation.
(ii) Water covers 70.8% of the Earth's surface.

Work out the area of the Earth's surface covered by water.
\qquad
(b) The table shows the surface area of some countries and their estimated population in 2017.

Country	Surface area $\left(\mathrm{km}^{2}\right)$	Estimated population in 2017
Brunei	5.77×10^{3}	433100
China	9.60×10^{6}	1388000000
France	6.41×10^{5}	67000000
Maldives	3.00×10^{2}	374600

(i) Find the total surface area of Brunei and the Maldives.
\qquad
(ii) The ratio surface area of the Maldives: surface area of China can be written in the form $1: n$.

Find the value of n.

$$
n=
$$

(iii) Find the surface area of France as a percentage of the surface area of China.
(iv) Find the population density of the Maldives.
[Population density $=$ population \div surface area]
(c) The population of the Earth in 2017 was estimated to be 7.53×10^{9}.

The population of the Earth in 2000 was estimated to be 6.02×10^{9}.
(i) Work out the percentage increase in the Earth's estimated population from 2000 to 2017.
\qquad
(ii) Assume that the population of the Earth increased exponentially by $y \%$ each year for these 17 years.

Find the value of y.

$$
y=
$$

P ©

Morgan picks two of these letters, at random, without replacement.
(a) Find the probability that he picks
(i) the letter Y first,
\qquad
(ii) the letter B then the letter Y ,
(iii) two letters that are the same.
(b) Morgan now picks a third letter at random.

Find the probability that
(i) all three letters are the same,
(ii) exactly two of the three letters are the same,
(iii) all three letters are different.

4 (a)

A, B, C and D are points on the circle, center O.
$E F$ is a tangent to the circle at D.
Angle $A D E=42^{\circ}$ and angle $C O D=162^{\circ}$.
Find the values of w, x, y, and z.
\qquad

$$
v=
$$

$$
=
$$

$$
\begin{equation*}
z= \tag{7}
\end{equation*}
$$

(b)

$P Q R$ is a triangle.
T is a point on $P R$ and U is a point on $P Q$.
$R Q$ is parallel to $T U$.
(i) Explain why triangle $P Q R$ is similar to triangle $P U T$.

Give a reason for each statement you make.
\qquad
\qquad
\qquad
\qquad
(ii) $\quad P T: T R=4: 3$
(a) Find the ratio $P U: P Q$.
\qquad
(b) The area of triangle $P U T$ is $20 \mathrm{~cm}^{2}$.

Find the area of the quadrilateral $Q R T U$.

5 (a) The average speeds, in km / h, of cars traveling along a road are recorded. The box plot shows this information.

Find
(i) the lowest speed recorded,
km/h [1]
(ii) the median,
\qquad
(iii) the interquartile range.
\qquad km/h [1]
(b) Another car takes 18 seconds to travel 400 m along this road.

Calculate the average speed of this car in km / h.

6 (a) Find the integer values that satisfy the inequality $2<2 x \leqslant 10$.
(b) Factor.
(i) $6 y^{2}-15 x y$
(ii) $y^{2}-9 x^{2}$
(c) Simplify.

$$
\frac{3}{x-1}-\frac{2}{2 x+1}
$$

NOT TO SCALE
$A B C D E F G H$ is a closed hollow cuboid.
$A B=8 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and $C G=11 \mathrm{~cm}$.
(a) (i) Work out the total surface area of the cuboid.
\qquad cm^{2}
(ii) The cuboid is made from thin metal and $1 \mathrm{~cm}^{2}$ of this metal has a mass of 0.73 grams. Work out the mass of the cuboid.
(b) Ivana has a rod of length 13 cm .
(i) The total mass of this rod and the cuboid is 0.3 kg .

Find the mass of the rod, giving your answer in grams.
\qquad
(ii) Show that the rod fits completely inside the cuboid.
(c) Calculate angle $C A B$.

Angle $C A B=$
[2]

8 (a) (i) Factor $24+5 x-x^{2}$.
(ii) The diagram shows a sketch of $y=24+5 x-x^{2}$.

Work out the values of a, b, and c.

$$
\begin{aligned}
& a= \\
& b= \\
& c=
\end{aligned}
$$

(iii) The line $y=18$ intersects the graph of $y=24+5 x-x^{2} \quad$ at P and Q.

Find the length of $P Q$.
(b)

NOT TO
SCALE

The diagram shows a sketch of the graph of a cubic function $\mathrm{f}(x)$.
The graph passes through the points $(-5,0),(-2,0),(0,0)$, and $(1,36)$.
Find $\mathrm{f}(x)$ in the form $a x^{3}+b x^{2}+c x$.

9 (a) $\overrightarrow{A B}=\binom{6}{-1} \quad \overrightarrow{B C}=\binom{-2}{5} \quad \overrightarrow{D C}=\binom{2}{-3}$

Find
(i) $\overrightarrow{A C}$,

$$
\begin{equation*}
\overrightarrow{A C}=(\tag{2}
\end{equation*}
$$

(ii) $\overrightarrow{B D}$,

$$
\begin{equation*}
\overrightarrow{B D}=(\tag{2}
\end{equation*}
$$

(iii) $|\overrightarrow{B C}|$.
(b)

In the diagram, $O A B$ and $O E D$ are straight lines.
O is the origin, A is the midpoint of $O B$ and E is the midpoint of $A C$.
$\overrightarrow{A C}=\mathbf{a}$ and $\overrightarrow{C B}=\mathbf{b}$.
Find, in terms of \mathbf{a} and \mathbf{b}, in its simplest form
(i) $\overrightarrow{A B}$,
(ii) $\overrightarrow{O E}$,

$$
\overrightarrow{O E}=
$$

(iii) the position vector of D.
$10 \mathrm{f}(x)=4-3 x$
$g(x)=x^{2}+x$
$\mathrm{h}(x)=3^{x}$
(a) Find $f(h(2))$.
(b) Find $\mathrm{f}^{-1}(x)$.

$$
\mathrm{f}^{-1}(x)=
$$

(c) Simplify.
(i) $\mathrm{f}(1-2 x)$
(ii) $\quad \mathrm{g}(\mathrm{f}(x))-9 \mathrm{~g}(x)$
(d) $\frac{1}{\mathrm{~h}(x)}=9^{k x}$

Find the value of k.

$$
k=
$$

(e) $\quad \mathrm{j}(x)=(x+1)(x+2)$

The graph of $\mathrm{g}(x)$ is mapped onto the graph of $\mathrm{j}(x)$ by a translation.
Find the column vector that represents this translation.

Question 11 is printed on the next page.

11 The table shows the first four terms in sequences A, B, C and D.

Sequence	1st term	2nd term	3 rd term	4 th term	5 th term	nth term	
A	4	9	14	19			
B	3	10	29	66			
C	1	4	16	64			
D	$\frac{3}{17}$	$\frac{4}{26}$	$\frac{5}{37}$	$\frac{6}{50}$			

Complete the table.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

